Sunday, March 13, 2022

Is Graph Bipartite




Bipartite
If it is possible to divide vertices into two mutually exclusive and exhaustive sets such that all edges are across sets


mutually exclusive
  • 2 sets can be created 
  • intersection of 2 sets should be zero
Exhaustive
  • all vertices should come



Above graph can't be bipartite.







Every non-cyclic graph is bipartite.
If cycle exists, it should be of even size only.



I/P: 
7
5
0 1 10
2 3 10
4 5 10
5 6 10
4 6 10

O/P: false





package pep.Day41;

import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.util.ArrayDeque;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.Queue;

public class Is_Graph_Bipartite {
static class Edge {
int src;
int nbr;

Edge(int src, int nbr) {
this.src = src;
this.nbr = nbr;
}
}

public static void main(String[] args) throws Exception {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));

int vtces = Integer.parseInt(br.readLine());
ArrayList<Edge>[] graph = new ArrayList[vtces];
for (int i = 0; i < vtces; i++) {
graph[i] = new ArrayList<>();
}

int edges = Integer.parseInt(br.readLine());
for (int i = 0; i < edges; i++) {
String[] parts = br.readLine().split(" ");
int v1 = Integer.parseInt(parts[0]);
int v2 = Integer.parseInt(parts[1]);
graph[v1].add(new Edge(v1, v2));
graph[v2].add(new Edge(v2, v1));
}
HashMap<Integer, Integer> visited = new HashMap<>();
boolean ans = true;
for (int i = 0; i < vtces; i++) {
if (!visited.containsKey(i))
if (dfs(graph, i, visited) == false) {
ans = false;
break;
}
}

System.out.println(ans);

}

private static boolean dfs(ArrayList<Edge>[] graph, int src, HashMap<Integer, Integer> visited) {
Queue<Pair> queue = new ArrayDeque<>();
int level = 0;

queue.add(new Pair(src, level));
boolean isBipartite = true;
while (!queue.isEmpty()) {
Pair out = queue.remove();

if (!visited.containsKey(out.vertice)) {
visited.put(out.vertice, out.level);
} else {
                // conflict aa gya toh
if (out.level != visited.get(out.vertice)) {
isBipartite = false;
return isBipartite;
}
}

level++;
for (Edge e : graph[out.vertice]) {
if (!visited.containsKey(e.nbr)) {
queue.add(new Pair(e.nbr, level));
}
}

if (visited.size() == graph.length)
return isBipartite;
}
return true;
}

static class Pair {
int vertice;
int level;

Pair(int vertice, int level) {
this.vertice = vertice;
this.level = level;
}
}
}




No comments:

Post a Comment

Diagonal Traversal

 eg.  1       2       3       4 5      6       7       8 9    10    11     12 13  14   15    16 Output: 1 6 11 16 2 7 12 3 8 4  Approach:...