Thursday, March 17, 2022

Topological Order - Kahn's Algorithm



Step 1. we will calculate indegree of all nodes

indegree = kitne log dependent hai mere node pr













package pep.Day44;

import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.LinkedList;
import java.util.Queue;

public class Kahn_Algorithm {

static class Edge {
int src;
int nbr;

Edge(int src, int nbr) {
this.src = src;
this.nbr = nbr;
}
}

public static void main(String[] args) throws Exception {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));

int vtces = Integer.parseInt(br.readLine());
ArrayList<Edge>[] graph = new ArrayList[vtces];
for (int i = 0; i < vtces; i++) {
graph[i] = new ArrayList<>();
}

int edges = Integer.parseInt(br.readLine());
for (int i = 0; i < edges; i++) {
String[] parts = br.readLine().split(" ");
int v1 = Integer.parseInt(parts[0]);
int v2 = Integer.parseInt(parts[1]);
graph[v1].add(new Edge(v1, v2));
// directed graph hai to isko comment kr denge
// graph[v2].add(new Edge(v2, v1));
}

kahns(graph);
}

public static void kahns(ArrayList<Edge>[] graph) {
int n = graph.length;
// first we will find indegree
int[] indegree = new int[n];
for (int i = 0; i < n; i++) {
for (Edge e : graph[i]) {
indegree[e.nbr]++;
}
}

// jin jin ki indegree 0 hai, unko queue m add kr do
Queue<Integer> que = new LinkedList<>();
for (int i = 0; i < indegree.length; i++) {
if (indegree[i] == 0)
que.add(i);
}

LinkedList<Integer> ans = new LinkedList<>();
while (!que.isEmpty()) {

int remove = que.remove();
ans.addFirst(remove);
// jisko remove kiya, woh jis jis par dependent hai uski indegree -1 kro
// if indegree == 0, then again add in queue
for (Edge e : graph[remove]) {
if (--indegree[e.nbr] == 0)
que.add(e.nbr);
}
}
System.out.println(ans.size() == n ? ans : "cycle is present, topological sort is not possible...");
}
}

No comments:

Post a Comment

Diagonal Traversal

 eg.  1       2       3       4 5      6       7       8 9    10    11     12 13  14   15    16 Output: 1 6 11 16 2 7 12 3 8 4  Approach:...