Wednesday, March 9, 2022

Hamiltonian Path And Cycle

I/O:
7
9
0 1 10
1 2 10
2 3 10
0 3 10
3 4 10
4 5 10
5 6 10
4 6 10
2 5 10
0

O/P:
0123456.
0123465.
0125643*
0346521*

0123456.
0123465.
0125643*
0346521*


Hamiltonian Path
    - visit all vertices
    - don't visit any vertice twice

Hamiltonian Cycle
    - first and last vertices should have direct connection

Method 1. USING BOOLEAN visited AND counter (print . at the end)

Method 2. USING HASHSET visited AND counter (print * at the end)





package pep.Day39;

import java.io.*;
import java.util.*;

public class Hamiltonian_Path_And_Cycle {

static class Edge {
int src;
int nbr;
int wt;

Edge(int src, int nbr, int wt) {
this.src = src;
this.nbr = nbr;
this.wt = wt;
}
}

public static void main(String[] args) throws Exception {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));

int vtces = Integer.parseInt(br.readLine());
ArrayList<Edge>[] graph = new ArrayList[vtces];
for (int i = 0; i < vtces; i++) {
graph[i] = new ArrayList<>();
}

int edges = Integer.parseInt(br.readLine());
for (int i = 0; i < edges; i++) {
String[] parts = br.readLine().split(" ");
int v1 = Integer.parseInt(parts[0]);
int v2 = Integer.parseInt(parts[1]);
int wt = Integer.parseInt(parts[2]);
graph[v1].add(new Edge(v1, v2, wt));
graph[v2].add(new Edge(v2, v1, wt));
}

int src = Integer.parseInt(br.readLine());

// write all your codes here
boolean[] visited1 = new boolean[vtces];
hamiltonianPathAndCycle1(graph, src, visited1, "", vtces - 1, src);

System.out.println();

HashSet visited2 = new HashSet();
hamiltonianPathAndCycle2(graph, src, visited2, "", src);
}

// USING HASHSET visited AND counter
    private static void hamiltonianPathAndCycle2(ArrayList<Edge>[] graph, int src, HashSet visited2, String asf, int firstSource) {
if (visited2.size() == graph.length - 1) {
asf += src;
System.out.print(asf);
for (Edge e : graph[firstSource]) {
if (e.nbr == src) {
System.out.println("*");
return;
}
}
System.out.println(".");
return;
}

visited2.add(src);
asf += src;
for (Edge e : graph[src]) {
if (!visited2.contains(e.nbr)) {
hamiltonianPathAndCycle2(graph, e.nbr, visited2, asf, firstSource);
}
}
visited2.remove(src);
}

    // USING BOOLEAN visited AND counter
private static void hamiltonianPathAndCycle1(ArrayList<Edge>[] graph, int src, boolean[] visited, String asf, int count, int firstSource) {
if (count == 0) {
asf += src;
System.out.print(asf);

for (Edge e : graph[firstSource]) {
if (e.nbr == src) {
System.out.println("*");
return;
}
}
System.out.println(".");
return;
}

visited[src] = true;
asf += src;
for (Edge e : graph[src]) {
if (!visited[e.nbr]) {
hamiltonianPathAndCycle1(graph, e.nbr, visited, asf, count - 1, firstSource);
}
}
visited[src] = false;

}


}







No comments:

Post a Comment

Diagonal Traversal

 eg.  1       2       3       4 5      6       7       8 9    10    11     12 13  14   15    16 Output: 1 6 11 16 2 7 12 3 8 4  Approach:...